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All evidence so far suggests that the absolute spatial orientation of an experiment never af-

fects its outcome. This is reflected in the Standard Model of physics by requiring all particles

and fields to be invariant under Lorentz transformations. The most well-known test of this im-

portant cornerstone of physics are Michelson-Morley-type experiments verifying the isotropy

of the speed of light1–3. For matter, Hughes-Drever-type experiments4–11 test that the kinetic en-

ergy of particles is independent of the direction of their velocity, i.e., their dispersion relations

are isotropic. Here we search for violation of Lorentz symmetry for electrons by performing an

electronic analogue of a Michelson-Morley experiment. We split an electron-wavepacket bound

inside a calcium ion into two parts with different orientations and recombine them after a time

evolution of 95 ms. As the Earth rotates, the absolute spatial orientation of the wavepackets

changes and anisotropies in the electron dispersion would modify the phase of the interference

signal. To remove noise, we prepare a pair of ions in a decoherence-free subspace, thereby re-

jecting magnetic field fluctuations common to both ions12. After a 23 hour measurement, we

limit the energy variations to h × 11 mHz (h is Planck’s constant), verifying the isotropy of the

electron’s motion at the 1 × 10−18 level, a 100 times improvement over previous work9. Alterna-

tively, we can interpret our result as testing the rotational invariance of the Coulomb potential.

Assuming Lorentz symmetry holds for electrons and that the photon dispersion relation gov-

erns the Coulomb force, we obtain a fivefold improved limit on anisotropies in the speed of

light2,3. Our result probes Lorentz symmetry violation at levels comparable to the ratio be-

tween the electroweak and Planck energy scales13. Our experiment demonstrates the potential

of quantum information techniques in the search for physics beyond the Standard Model.

Invariance under Lorentz transformations is a key feature of the Standard Model (SM), and as such

is fundamental to nearly every aspect of modern physics. Nevertheless, this symmetry may be measur-

ably violated, e.g., due to spontaneous symmetry breaking in fields with dynamics at experimentally

inaccessible energy scales not explicitly treated by the SM14. Some theories that unify gravitation and

the SM assert that Lorentz symmetry is only valid at large length scales15,16. A natural estimate of the

fractional shift of electron dispersion relations due to LLI-violation at the Planck-scale is given by the

ratio between the electroweak and Planck energy scales at ∼ 2×10−17 (ref. 13). Other models suggest

that strong Lorentz-violation at the Planck scale might be custodially suppressed by supersymmetry.

In such scenarios, the constraints of Lorentz-violation of the neutron6 can be used to set an upper

bound on the supersymmetric energy scale of on the order of 100 TeV (ref. 17). Therefore, precision

tests of Lorentz symmetry complement direct probes of high energy physics being carried out at the

Large Hadron Collider.

We analyse Lorentz-violation in the context of a phenomenological framework known as the Stan-
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dard Model Extension (SME)18,19. The SME is an effective field theory that augments the SM La-

grangian with every possible combination of the SM fields that is not term-by-term Lorentz invariant,

while maintaining gauge invariance, energy-momentum conservation, and Lorentz invariance of the

total action18,19. The SME can be used to describe the low-energy limit of many different theories

which predict Lorentz-violation, and includes the SM as a limiting case. The SME thus provides a

comprehensive framework for quantifying a wide range of Lorentz-violating effects, and is a flexible

tool for consistently evaluating a wide variety of experiments20.

The SME allows for Lorentz-violation for all particles separately. However, to verify a particle’s

Lorentz symmetry, one must compare it to a reference system as only differences in their behaviors

under Lorentz transformation are observable19. For instance, typical interpretations of Michelson-

Morley-experiments testing Lorentz-violation of photons assume that the length of the interferometer

arms are invariant under rotations. As the length of interatomic bonds depends on the electron’s dis-

persion relation21,22, those interpretations can be said to assume that Lorentz symmetry for electrons

(and nuclei making up the interferometer arms) holds unless a second distinct reference system is

used22. For our experiment, it seems more natural to use light as a reference and assume that photons

obey Lorentz symmetry. However, it is important to keep in mind that an experimental signature of the

Lorentz-violation considered here can equally be attributed to Lorentz-violation of electrons as well

as to that of photons, which would manifest itself as an asymmetry of the photon-mediated Coulomb

potential (see Methods). Thus, we take the most general view that we measure the difference between

the electron and photon anisotropy.

We take this view by choosing a coordinate system where a hypothetical Lorentz violation in

light manifests itself in the electronic Lagrangian (see Methods). We obtain the modified electronic

quantum-electrodynamics Lagrangian:

L =
1
2

iψ̄(γν + c′µνγ
µ)
↔

Dν ψ − ψ̄meψ, (1)

where me is the electron mass, ψ is a Dirac spinor, γµ are the Dirac matrices, ψ̄
↔

Dν ψ ≡ ψ̄Dνψ −

ψDνψ̄ with Dν being the covariant derivative. The effect due to Lorentz-violation is described by

the tensor c′µν = cµν + kµν/2 which contains Lorentz-violation parameters from both the electron

(cµν) and photon (kµν) sectors18,19. Since c′µν is frame dependent, we uniquely specify its value in the

Sun-centred, celestial-equatorial frame (SCCEF), i.e., the Sun’s rest frame. Time-dependent Lorentz

transformations due to the Earth’s motion transform c′µν in the SCCEF to the time-dependent values

in the local laboratory frame on the Earth. Hence, the contribution of c′µν to any laboratory-frame

observable will vary in time.

For us, the important consequence of electronic Lorentz-violation is the dependence of an elec-
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tron’s energy on the direction of its momentum. For an atomically bound electron with momentum p,

the Lagrangian in Eq. (1) results in a small energy shift that depends on the direction of the electron’s

momentum described by the effective Hamiltonian23

δH = −C(2)
0

(p2 − 3p2
z )

6me
, (2)

where C(2)
0 contains elements in c′µν in the laboratory frame and pz is the component of electron

momentum along the quantisation axis which is fixed in the laboratory. The energy shift depends on

how the total momentum p is distributed among the three spatial components. As the Earth rotates,

C(2)
0 varies in time, resulting in a time variation of the electron’s energy correlated with the Earth’s

motion.

To probe Lorentz-violation, we perform the electronic analogue of a Michelson-Morley experi-

ment by interfering atomic states with anisotropic electron momentum distributions aligned along

different directions, such as available in the 2D5/2 manifold of 40Ca+. We trap a pair of 40Ca+ with

an ion-ion separation of ∼ 16 µm in a linear Paul trap, and define the quantisation axis by applying a

static magnetic field of 3.930 G vertically. The direction of this magnetic field changes with respect

to the Sun as the Earth rotates, resulting in a rotation of our interferometer (see Figure 1).

We calculate the hypothetical energy shift of 40Ca+ in the 2D5/2 manifold according to Eq. (2):
∆ELLI

h
= [(2.16 × 1015) − (7.42 × 1014) · m2

J] ·C(2)
0 (Hz), (3)

where mJ is the magnetic quantum number (see Methods). To obtain maximum sensitivity to Lorentz-

violation, we monitor the energy difference between the state |±5/2〉 ≡
∣∣∣2D5/2; mJ = ±5/2

〉
and

|±1/2〉 ≡
∣∣∣2D5/2; mJ = ±1/2

〉
using a Ramsey-type interferometric scheme. To reject magnetic field

noise which is the main source of decoherence, we create a product state
∣∣∣ΨP

〉
= 1

2 (|−1/2〉 + |−5/2〉)⊗

(|+1/2〉 + |+5/2〉) by applying a series of π/2 and π pulses on the S-D transition to both ions. Under

common noise induced by a fluctuating magnetic field, the product state rapidly dephases to a mixed

state that contains a decoherence-free entangled state
∣∣∣ΨR

〉
≡ 1
√

2
(|−5/2,+5/2〉 + |−1/2,+1/2〉) with

50% probability24. This entangled state time-evolves freely according to∣∣∣ΨR(t)
〉

=
1
√

2

(
|−5/2,+5/2〉 + ei(∆ERt/~+φR) |−1/2,+1/2〉

)
(4)

where ∆ER is the energy difference between the state |−5/2,+5/2〉 and |−1/2,+1/2〉, and φR is a

phase offset. The remaining components of the mixed state, which are the state |−5/2,+1/2〉 and

|−1/2,+5/2〉, each with 25% probability, are time-independent.

In Figure 2, we illustrate the dynamics of the state
∣∣∣ΨR

〉
. By expressing the state in the even-odd

parity basis, |±〉 = 1
√

2
(|−5/2,+5/2〉 ± |−1/2,+1/2〉), the time evolution

∣∣∣ΨR(t)
〉

can be written as∣∣∣ΨR(t)
〉

=
1
√

2

(
(1 + ei(∆ERt/~+φR)) |+〉 + (1 − ei(∆ERt/~+φR)) |−〉

)
. (5)
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We interpret the trajectory of
∣∣∣ΨR(t)

〉
to be along the equator of the Bloch sphere as shown in Figure 2b.

The state
∣∣∣ΨR(t)

〉
oscillates back and forth between the state |+〉 and |−〉 with frequency fR = ∆ER/h.

To readout the ion state in the |±〉 basis, we apply a series of π and π/2 pulses on the S-D transition to

both ions followed by an electron shelving readout scheme12. The difference between the probability

P+ and P− for the ions to be in the state |+〉 and |−〉, respectively, yields an oscillating signal given by

P = P+ − P− = cos (∆ERt/~ + φR), as shown in Figure 2c.

We are interested in the variations of the energy difference between the |±5/2,∓5/2〉 and |±1/2,∓1/2〉

states due to Lorentz-violation. However, linear Zeeman shifts from a residual magnetic field gradi-

ent, quadratic Zeeman shifts, electric quadrupole shifts from an electric field gradient, and ac Stark

shifts from oscillating trapping fields also affect the energy difference25,26. The contributions from the

magnetic field gradient on the order of 100 Hz have opposite signs for the state
∣∣∣ΨR

〉
and its mirrored

counterpart,
∣∣∣ΨL

〉
≡ 1

√
2

(|+5/2,−5/2〉 + |+1/2,−1/2〉). We can correct for this contribution to the

oscillation signal by taking the average frequency f̄ = ( fR + fL)/2 (see Extended Data Figure 1). The

remaining effects (except for Lorentz-violation), are energy shifts on the order of only a few Hertz

and are also directly related to external electromagnetic fields in the proximity of the ions. We expect

these fields to be stable to the 10−3 level in a day and the associated variations are on the few mHz

level and below. Moreover, we independently measure these fields using the ions themselves as a

probe (see Methods).

We measured the energy difference between the state |±5/2,∓5/2〉 and |±1/2,∓1/2〉 of 40Ca+ for

23 hours starting from 3:00 AM Coordinated Universal Time (UTC) on 19th April, 2014, by monitor-

ing the oscillation signal of the ions with an effective Ramsey duration of 95 ms (see Methods). At the

same time, we monitored the magnetic field and the electric field gradient using the ions themselves

as a probe (see Figure 3). We then used the measured values of the magnetic field and electric field

gradient to correct for the quadratic Zeeman and electric quadrupole shifts. The resulting 23-hour

frequency measurement is shown in Figure 4. With 23 hours of averaging, we reach a sensitivity

of the oscillation frequency of 11 mHz, limited by statistical uncertainties due to short term fluctu-

ations. We then attribute any residual variation of the energy correlated with the Earth’s rotation to

Lorentz-violation.

Lorentz transformations of c′µν from the SCCEF to the laboratory frame results in the time-

dependent energy shift due to Lorentz-violation given by

∆ELLI

h
= A cos(ω⊕T ) + B sin(ω⊕T ) + C cos(2ω⊕T ) + D sin(2ω⊕T ), (6)

where ω⊕ = 2π/23.93 h is the sidereal angular frequency of the Earth’s rotation, T is time since

vernal equinox of 2014 and (A, B,C,D) are parameters related to c′µν in the SCCEF (see Methods).
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Fitting our data (Figure 4) to Eq. (6) yields the limits of the c′µν parameters, where we report in Table

1 our results compared to existing limits. We improve the best measurements for those parameters,

carried out by precision spectroscopy of dysprosium9, by up to two orders of magnitude to a level

of 1 × 10−18. Alternatively, we can assume that Lorentz symmetry holds for electrons. We then can

interpret our results as limits for Lorentz-violation for photons (see Methods) and improve on the

bounds for Lorentz symmetry set by photon-Michelson-Morley experiments2 by up to five times (see

Table 1).

Our experimental scheme is readily applicable to other trapped ion species considered for quantum

information purposes. Many of those posses a long-lived electronic state with a non-vanishing angular

momentum. Thus, further improvement can be achieved by increasing the Ramsey durations utilising

metastable states with significantly longer lifetime, such as 30 seconds for the barium ion27, or by

using ions with higher sensitivity to Lorentz-violation, such as highly charged ions28. Additionally,

by preparing a pure entangled state of the ions instead of a mixed state, one readily gains another

factor of two in signal-to-noise ratio12. Finally, we do not see any signature of limiting systematic

effects and thus expect that future extensions of our experimental technique with better statistics will

yield tests of Lorentz symmetry at 10−20 and below where the polarization of black-body radiation in

combination with temperature changes is expected to become relevant.
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Figure 1: Rotation of the quantisation axis of the experiment with respect to the Sun as the

Earth rotates. We apply a magnetic field (~B) of 3.930 G vertically in the laboratory frame to define

the quantisation axis of the experiment. As the Earth rotates with an angular frequency given by

ω⊕ = 2π/23.93 h, the orientation of the quantisation axis and consequently that of the the electronic

wavepacket (as shown in the inset) changes with respect to the Sun’s rest frame. The angle

χ ∼ 52.1° is the colatitude of the experiment.
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Figure 2: Oscillation of the decoherence-free state. a, A combination of different magnetic

sub-levels of the first (denoted by •) and second (denoted by N) 40Ca+ ions in the 2D5/2 manifold

forms a decoherence-free state
∣∣∣ΨR

〉
≡ 1
√

2
(|−5/2,+5/2〉 + |−1/2,+1/2〉). Blue and red colours

indicate pairing of the single ion states in each component of
∣∣∣ΨR

〉
. b, Time evolution of the state∣∣∣ΨR(t)

〉
represented by a trajectory on a Bloch sphere with poles given by |−5/2,+5/2〉 and

|−1/2,+1/2〉. (We neglected contributions from the states |−5/2,+1/2〉 and |−1/2,+5/2〉 which have

no phase coherence.) The state
∣∣∣ΨR(t)

〉
oscillates back and forth between the even-odd parity basis

states, |±〉, as given in Eq. (5). c, Oscillation of a product state containing an entangled state
∣∣∣ΨR

〉
with 50% probability. Each data point is taken with 200 repetitions of the Ramsey-type experimental

cycle shown in Fig. 3a. The errorbars (not shown) are obtained from requiring that the fit to the

Ramsey fringe function (grey solid line) gives
√
χ2

reduced = 1 and assuming that the data is normally

distributed. The fit yields an oscillation frequency of 164.9 ± 0.1 Hz and a decay constant of

155 ± 17 ms, which is substantially shorter than the value expected from the lifetime of the 2D5/2

state of 40Ca+. We attribute the loss of coherence to the heating rate of the ion trap of ∼ 0.2

quanta/ms which degrades the quality of the analysis pulses for long Ramsey interrogation times.
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Figure 3: Outline of the experimental scheme. a, The building block of our experiment is a

Ramsey-type interferometric sequence. In each measurement cycle, we first perform Doppler

cooling and optical pumping of the ions. Then, a series of π/2 and π pulses on the S-D transition

prepare the ions in a product state that dephases into a mixed state within 1 ms. This state contains

an entangled state
∣∣∣ΨL,R

〉
≡ 1
√

2
(|±5/2,∓5/2〉 + |±1/2,∓1/2〉) with 50% probability. Afterwards, the

mixed state evolves freely for Ramsey duration T , before another series of π and π/2 pulses, together

with an electron shelving readout sequence, allows us to readout the state of the ions in the even-odd

parity basis. This measurement cycle is repeated for 200 times for
∣∣∣ΨL

〉
and

∣∣∣ΨR
〉
. b, To correct for

phase drifts in the preparation of
∣∣∣ΨL,R

〉
, we measure the difference in the oscillation signal between

Ramsey durations of 100 ms and 5 ms. We then correct for the contribution of the magnetic field

gradient by taking the average of the oscillation signals measured with state
∣∣∣ΨL

〉
and

∣∣∣ΨR
〉
. At the

end of this measurement block, we measure the magnetic field by performing spectroscopy on the

S-D transition to correct for the quadratic Zeeman effect. Each grey data point in Fig. 4a is a result

from one of these measurement blocks. c, We continuously repeat the measurement block during the

course of the 23-hour long measurement. To correct for the electric quadrupole shift caused by the

electric field gradient, we measure the axial trap frequency by performing spectroscopy on the S-D

transition.
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Figure 4: Frequency measurements for 40Ca+. a, The grey coloured data points represent

frequency measurements of 40Ca+ taken after each measurement block as shown in Fig. 3b with

contributions from the quadratic Zeeman shifts and electric quadrupole shifts subtracted out. (Gaps

in the data points are due to a failure of the laser frequency stabilisation). We started the

measurement at 3:00 UTC of April 19th, 2014, and continued for 23 hours. Dark blue points are

obtained by binning of data from 60 minute time intervals. The errorbars represent the one-σ

standard error of the data points within the bin, where we scale the error by
√
χ2

reduced = 1.3

(obtained from the fit of the binned data to the model in Eq. (6)). b, Allan deviation of the frequency

measurement, σ f , calculated from the unbinned data with errorbars representing one-σ standard

errors. The red solid line is the estimated quantum projection noise. The green dashed line is a fit to

the data, showing a sensitivity to the ions’ energy variation of σ f = 3.3 Hz/
√
τ, where τ is the

averaging time. The steady downward trend indicates that we are still limited by statistical

fluctuations rather than by correlated noise or systematics over the course of the measurement.



11

TABLE 1: Limits on differential electron-photon Lorentz-violation parameters

c′µν = cµν + kµν/2. Fitting our frequency measurements to the model in Eq. (6) yields the limits on

Lorentz-violation parameters c′µν in the SCCEF. All uncertainties for the uncorrelated combinations

of c′µν are one-σ standard errors from the fit conservatively scaled with
√
χ2

reduced = 1.3. We improve

the bounds from ref. 9 on the electron dispersion by up to two orders of magnitude. Alternatively, we

can work in coordinates such that the electron dispersion is isotropic. We then improve on the

existing limits for the isotropy of the speed of light set by a modern version of the classic

Michelson-Morley experiment in ref. 2 by up to five times (see Methods). Note that the work in

ref. 9 assumed kµν = 0 while that in ref. 2 assumed cµν = 0. We use the notation c′X−Y = c′XX − c′YY .

Parameters New limits Existing limits

c′µν ≡ cµν + kµν/2 cµν (electrons) kµν/2 (photons)

-0.16c′X−Y+0.33c′XY -0.92c′XZ-0.16c′YZ 0.1 ± 1.0 × 10−18 −0.9 ± 1.0 × 10−16 −2.5 ± 3.5 × 10−18

-0.04c′X−Y -0.32c′XY -0.35c′XZ+0.88c′YZ 2.4 ± 7.4 × 10−19 −0.9 ± 6.5 × 10−17 −5.2 ± 3.6 × 10−18

0.29c′X−Y -0.38c′XY -0.73c′XZ-0.48c′YZ 5.9 ± 9.5 × 10−19 −8.1 ± 9.5 × 10−17 −0.6 ± 3.8 × 10−18

-0.31c′X−Y -0.65c′XY+0.07c′XZ-0.69c′YZ 0.7 ± 1.2 × 10−18 −2.9 ± 6.5 × 10−17 −2.6 ± 3.8 × 10−18
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METHODS

Lorentz-violation parameters of electrons and photons.

While Lorentz symmetry, or local Lorentz invariance, requires that the laws of physics be the same

in all coordinate systems in the group formed by Lorentz transformations, it does not restrict our

initial choice of coordinates. As a result, some forms of Lorentz-violation cannot be unambiguously

attributed to a single species of elementary particle without first specifying this coordinate choice. In

particular, we can select our initial coordinates such that cµν (or its gauge field analog kµν) vanishes

at leading order for any single species of particle (or gauge field). This particle then becomes a

Lorentz-covariant ‘yardstick’ which other species can be compared against. For instance one might

use light as the yardstick, i.e., one would measure space such that xi = cit with the speed of light ci

constant in all three spatial directions i. Alternatively, one might use a coordinate system for which

Lorentz symmetry is preserved for electrons. Then, the value of cit might not be the same in all three

spatial directions. In this case, Lorentz-violation would manifest itself by breaking the rotational

symmetry of the photon mediated Coulomb force, yielding the same measurable energy shift as in the

previous case. Consequently, a single experimental approach constrains typically a linear combination

of particles and gauge fields.

To analyze which linear combination in the SME we test in our experiment, we neglect contribu-

tions of the nucleus to the Lorentz-violation signal for two reasons. First, the quadrupole moment of

the doubly-magic 40Ca+-nucleus is expected to vanish. Secondly, the violations Lorentz symmetry

for nucleon constituents have been constrained to 10−26 for protons29 and 10−29 for neutrons6,7. In

addition to the Lorentz-violating Lagrangian for electrons (Eq. (1)) in the SME, the Lorentz-violation

for electromagnetic fields (photons) is given by the κ̃JK parameters (which are functions of kµν) in the

following Lagrangian30:

L =
1
2

[
(1 + κ̃tr)|~E|2 − (1 − κ̃tr)|~B|2

]
+

1
2

[
~E · κ̃e− · ~E − ~B · κ̃e− · ~B

]
+ ~E · κ̃o+ · ~B, (7)

where κ̃tr is a scalar and κ̃e− is a 3×3 traceless symmetric matrix and κ̃o+ is an antisymmetric matrix. By

means of a coordinate transformation, the observation due to Lorentz-violation of both the electrons

and photons can be made to only appear in either the SME Lagrangian for the electron sector (Eq.

(1)) or the photon sector (Eq. (7)). In both cases, the linear combinations of parameters relevant to
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our experiment are31

c′X−Y = cXX − cYY +
1
2

(κ̃XX
e− − κ̃

YY
e− ) (8)

c′XY = cXY +
1
2
κ̃XY

e− (9)

c′XZ = cXZ +
1
2
κ̃XZ

e− (10)

c′YZ = cYZ +
1
2
κ̃YZ

e− , (11)

with parameter κ̃e− characterising anisotropy of the speed of light. The best existing limits on κ̃XY
e− , κ̃

XZ
e− ,

κ̃YZ
e− and (κ̃XX

e− − κ̃
YY
e− ) are given in ref. 2. In Table 1, we compare our results to these limits.

Experimental setup.

We trap a pair of 40Ca+ ions in a linear Paul trap with an interelectrode distance of 1.0 mm. We

apply a radio frequency (rf) voltage of ∼ 500 Vpp to each pair of the rf electrodes. One pair of the

electrodes is driven 180 degrees relative to the other pair. With ∼ 4 V dc applied to the endcaps, we

obtain trap frequencies of 2π · (2.2, 2.0) MHz in the radial directions and 2π · 210 kHz in the axial

direction. The axial direction is aligned horizontally in the laboratory frame. To define a quantisation

axis, we apply a static magnetic field of 3.930 G vertically (45 degrees with respect to both radial

directions of the trap) using a coil. Additionally, we use another magnetic coil to compensate for

residual magnetic field gradient along the axial direction.

Two independent 729 nm laser light beams in the vertical direction drive π and π/2 pulses on the

S1/2-D5/2 transition on each ion separately. Both beams are derived from a laser stabilised to a high

finesse optical cavity to better than 100 Hz. Another beam path addressing both ions in the horizontal

direction (45 degrees with respect to the axial direction) is used for Doppler cooling (397 nm and 866

nm) and repumping for the D5/2 state (854 nm). We perform all laser light switching and frequency

shifting using acousto-optical modulators (AOMs) in a double-pass configuration. We generate all rf

voltages supplied to the AOMs using direct-digital-synthesiser (DDS) chips from Analog Devices®

(AD9910). The timing in the experimental sequence is controlled by a field-programmable-gate-array

(FPGA) module XEM6010 from Opal Kelly®. We characterise the stability of the on-board crystal

oscillator using a frequency counter (Agilent® 53210A). The clock stability is measured to be at

the level of 4 × 10−7, which translates to better than 5 µHz stability in the oscillation signal of the

measurement of Lorentz-violation.
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Measurement scheme.

The experimental sequence is shown in Figure 3. We measure four independent oscillation signals

for the two states
∣∣∣ΨL

〉
≡ 1
√

2
(|+5/2,−5/2〉 + |+1/2,−1/2〉) and

∣∣∣ΨR
〉
≡ 1
√

2
(|−5/2,+5/2〉 + |−1/2,+1/2〉),

each with both short (Tshort = 5 ms) and long (Tlong = 100 ms) Ramsey duration (see Figure 3b).

Within each measurement block in Figure 3b, the order in which we perform Ramsey spectroscopy

for each state and Ramsey duration is randomised to average out systematic noise that might coincide

with the period (∼ 60 seconds) of the measurement block.

In general, the oscillation signal has the form S (t) = A cos(2π f t + φoffset + φlaser) + B, whereA is

the amplitude, B is a possible offset to the overall level of the signal, f is the oscillation frequency,

φoffset is the phase offset and φlaser is an additional phase that we can control by changing the phase of

the 729 nm laser light (through the rf signal supplied to the AOM for each beam path) that drives π

and π/2 pulses on the S1/2-D5/2 transition of the ions.

For a given state and Ramsey duration, the Ramsey interferometric cycle shown in Figure 3a is

repeated for 200 times. To cancel out drifts in the offset of the signal, B, we perform the first 100

cycles of the Ramsey sequence with the phase of the laser light given by φlaser and the next 100 cycles

with the phase of the laser light given by φlaser + π. We then take the difference between these two

signals, (S (φlaser) − S (φlaser + π))/2 = A cos(2π f t + φoffset + φlaser), which does not depend on B.

For a fixed Ramsey duration T , the oscillation signal S (T ) = A cos(2π f T + φoffset + φlaser) is

most sensitive to variation in the oscillation frequency, f , when the signal crosses zero, i.e. when

2π f T + φoffset + φlaser = π/2. We make sure that the oscillation signal remains close to zero by adding

the phase correction calculated from the oscillation signal: δφ = cos−1
(

S (T )
A

)
− π

2 to the phase of the

laser light, φlaser. The long term measurement of the variation in the oscillation frequency, δ f , is then

derived from the phase correction data using δφ = 2πTδ f .

In addition to the change in the oscillation frequency, any change in φoffset in the state preparation

affects the phase correction: δφ = 2πTδ f + δφoffset. To correct for a contribution from this phase

offset, we use signals from two Ramsey durations (Tshort = 5 ms and Tlong = 100 ms) and calculate

the difference between the phase corrections: δφlong − δφshort = 2π(Tlong − Tshort)δ f . The oscillation

frequency for the state
∣∣∣ΨL,R

〉
is given by δ fL,R =

[
(δφlong − δφshort)/2π(Tlong − Tshort)

]
L,R

where the

effective Ramsey duration is Tlong − Tshort = 95 ms.

While the linear Zeeman effects from a magnetic field common to both ions drops out, the linear

Zeeman effect due to a magnetic field gradient does not cancel. In a typical unshielded laboratory

environment, the gradient remains stable enough to allow for contrast with Ramsey times of about

30 s (ref. 32). To remove still existing frequency variations from the gradient, we take the average



18

frequency δ f̄ = (δ fL + δ fR)/2 of the states
∣∣∣ΨL

〉
and

∣∣∣ΨR
〉

(see Extended Data Figure 1), which now

contains only contributions from the electric quadrupole shift, quadratic Zeeman shift, ac Stark shifts

from oscillating trapping fields and shifts from Lorentz-violation.

We characterise the effect of the electric quadrupole shift by measuring the oscillation frequency δ f̄

as a function of the electric field gradient by changing the axial trap frequency. For our experimental

setup, we obtain δ f̄ = [4.0(8) (Hz mm2/V) · E′ + 8.9(8) (Hz)], where E′ is the electric field gradient.

At our operating axial trap frequency of 210 kHz, this translates to variations in the quadrupole shift

due to changes in the axial trap frequency of 27 ± 12 mHz/kHz. The offset of 8.9(8) Hz is due to the

quadratic Zeeman shift, which agrees with the estimated value of 8 Hz for the applied magnetic field

of 3.930 G. Any change in the magnitude of the applied magnetic field near our operating value of

3.930 G gives a variation of the quadratic Zeeman shift of 4 mHz/mG. Using the ions as a probe, we

measure both the magnetic field and the axial trap frequency during the course of the experiment and

correct for their contributions from the oscillation signal. Over the course of our 23-hour-long run, our

axial trap frequency varies within ∼ 1 kHz and the magnetic field within 1 mG. These instabilities

translate into variations of the correction for the quadrupole shift of ∼ 30 mHz and for the magnetic

field of 3 mHz to the oscillation frequency. Fitting the model in Eq. (6) to the corrections only, we find

that not taking into account the axial frequency instability would cause a false Lorentz-violation signal

with amplitudes of less than 3 mHz, while not correcting for the magnetic field instabilities would

cause a signal with amplitudes of less than 0.5 mHz. Thus, in principle no correction for their drift

would have been necessary. We note also that by measuring those quantities during the measurement

run, their contributions are expected to average down as fast as the primary measurement signal and

thus should pose no limitation for improved Lorentz symmetry tests with longer measurement runs.

The oscillating electric field from the rf electrodes of the trap induces ac Stark shifts of the atomic

transitions of the ions. The amplitude of the oscillating field experienced by the ions depends on

the stray background static electric field. For our trap, we estimate that the stray electric field at the

vicinity of the ions is ∼5 V/cm. This produces a differential ac Stark shift between the |±1/2〉 and

|±5/2〉 states to be ∼120 mHz (Ref. 33). The stability of the stray field is expected to be better than

10−2 level during the course of the experiment, which translates to less than 4 mHz change in the

oscillation frequency for the two-ion state.

Statistical analysis of the data.

After each measurement block as shown in Figure 3b, we obtain a data point for the frequency

difference between both states. We then bin the data points within 60 minutes intervals. The errorbar
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for each binned data point is assigned using the calculated standard deviation within each bin. To

extract the amplitudes of Lorentz-violation, we perform a weighted least-square-fit of the binned data

points to the model given in Eq. (6). We scale the one-σ standard errors of the fitted parameters with√
χ2

reduced = 1.3 to conservatively account for other remaining systematics.

Calculation of the energy shift due to the Lorentz-violation for 40Ca+.

Violations of Lorentz symmetry and Einstein’s equivalence principle in bound electronic states

result in a small shift of the Hamiltonian that can be described by9

δH = −

(
C(0)

0 −
2U
3c2 c′00

)
p2

2
−

1
6

C(2)
0 T (2)

0 , (12)

where we use atomic units, p is the momentum of a bound electron, U is the Newtonian potential,

and c is the speed of light. The parameters C(0)
0 ,C(2)

0 and c′00 are elements in the c′µν tensor which

characterises Lorentz-violation. The relativistic form of the p2 operator is cγ0γ
j p j (a summation is

implied by repeat indices), where γi are the Dirac gamma matrices. The non-relativistic form of the

T (2)
0 operator is T (2)

0 = p2 − 3p2
z , where pz is the component of the momentum along the quantisation

axis, and the relativistic form is T (2)
0 = cγ0

(
γ j p j − 3γ3 p3

)
. Therefore, the shift of Ca+ 3d 2D5/2 energy

level due to the c′µν tensor depends on the values of 〈3d 2D5/2|p2|3d 2D5/2〉 and 〈3d 2D5/2|T
(2)
0 |3d 2D5/2〉

matrix elements.

Using the Wigner-Eckart theorem we express the matrix element of the irreducible tensor operator

T (2)
0 through the reduced matrix element of the operator T (2) as

〈JmJ |T
(2)
0 |JmJ〉 =

−J (J + 1) + 3m2
J

√
(2J + 3) (J + 1) (2J + 1) J (2J − 1)

〈J||T (2)||J〉. (13)

The expressions for the p2 and T (2) matrix elements are given in the supplementary material of ref.

9. The values of angular factors in Eq. (13) are −0.27951 + 0.22361 m2
J for 3d 2D3/2 and −0.21348 +

0.073193 m2
J for 3d 2D5/2.

First, we calculated the required matrix elements in a lowest-order Dirac-Fock (DF) and then in-

cluding random-phase approximation (RPA). Next, we carry out much more accurate calculations

using the configuration interaction method with single and double excitations (CI-SD) and four vari-

ants of the all-order (linearised coupled-cluster) method34. The virial theorem is also used for the p2

calculations.

The results are summarised in Extended Data Table 1. We note that we list the reduced matrix

elements for the T (2) operator but actual matrix elements for the p2 operator because there is no

necessity to introduce reduced matrix elements for a scalar operator. The values in the DF(FC) and
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DF columns are lowest-order DF values calculated with and without the frozen core approximation.

In the frozen core approximation the DF equations for the core electrons are solved self-consistently

first and the valence orbital is calculated with unchanged, i.e. “frozen” core. For the p2 operator such

approximation appears to give very poor results for the 3d states. If the core orbitals are allowed to

vary together with the valence orbital, the lowest-order value is only 16% away from the final virial

theorem value. Addition of the RPA correction to the frozen-core DF value fixes this problem as

well, as RPA corrections describe reaction of the core electrons to an externally applied perturbation.

The perturbation produced by the operator p2 is very large and, as a result, the RPA corrections for

〈ψ|p2|ψ〉 matrix elements are large. Such problem does not arise for the T (2) operator; the correlation

correction to its matrix elements is much smaller and the accuracy of the resulting values is much

higher.

The CI-SD calculations are carried out using the Dirac-Fock basis for the occupied core and va-

lence atomic states and DF-Sturm basis for unoccupied virtual orbitals; the frozen-core approximation

is not used. The description of the DF-Sturm equations is given in ref. 35,36. The configuration state

functions (CSF) are constructed from the one-electron wave functions as a linear combination of

Slater determinants. The set of the CSFs is generated including all single and double excitations into

one-electron states of the positive spectrum. Single excitations are allowed to all core shells, double

excitations are allowed to 3s and 3p core shells.

To calculate the value 〈v|p2|v〉, we also used the approach based on the virial theorem. In the

nonrelativistic limit the virial theorem can be written in the form

E = −
1
2
〈Ψ|

∑
i

p2(i)|Ψ〉 ,

where E is a total energy of the system. Therefore, the value 〈v|p2|v〉 can be calculated using the

removal energies of the valence electron. The virial theorem gives us a possibility to calculate the

expectation value of the p2 operator as a difference of the total energies EN and EN−1 of N and N − 1

systems multiplied by 2. Since the differential energy E can be calculated with an accuracy much

higher than the wave function Ψ, this approach is appropriate for the light atoms and ions where

relativistic effects are negligible. The virial theorem results that use experimental data for the 3d

removal energies from ref. 37 are listed in the column “VT”.

We have also carried out the calculations of the 〈Ψ|p2|Ψ〉 and 〈Ψ||T (2)||Ψ〉 matrix elements using

the all-order (linearised coupled-cluster) method34. The all-order method gave very accurate values

of the 3d j lifetimes38 and quadrupole moments39 in a Ca+ ion. In the all-order method, single, double,

and partial triple excitations of Dirac-Hartree-Fock wave functions are included to all orders of per-

turbation theory. We refer the reader to the review34 for the description of the all-order method and
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its applications. Both single-double (SD) and single-double-partial triple (SDpT) ab initio all-order

calculations were carried out. In addition, a scaling of the dominant terms34 was carried out for both

SD and SDpT calculations to improve the accuracy and to evaluate the uncertainty of the final values.

The calculations were carried out with both nonrelativistic and relativistic operators; the differences

were found to be negligible at the present level of accuracy. The values calculated with relativistic

operators are listed in Extended Data Table 1.

The virial theorem values are taken as final for the matrix element of the p2 operator. The un-

certainty of 12% is estimated as the difference of the virial theorem and all-order values. The SD

scaled values are taken as final for the T (2) operator (see ref. 38,39 for the discussion of the choice

of the final all-order values). The uncertainty is determined as the spread of the four all-order values.

Substituting the final all-order values of the 〈3d 2DJ ||cγ0

(
γ j p j − 3γ3 p3

)
||3d 2DJ〉 matrix element into

Eq. (13) and using virial theorem value of 〈3d 2DJ |p2|3d 2DJ〉 we get:

3d 2D3/2 :
4E
h
≈ −2.46 × 1015 Hz

(
C(0)

0 −
2U
3c2 c′00

)
+

(
2.17 × 1015 − 1.47 × 1015 m2

J

)
Hz ·C(2)

0 , (14)

3d 2D5/2 :
4E
h
≈ −2.46 × 1015 Hz

(
C(0)

0 −
2U
3c2 c′00

)
+

(
2.16 × 1015 − 7.42 × 1014 m2

J

)
Hz ·C(2)

0 , (15)

where the uncertainty of the coefficients standing in front of the
(
C(0)

0 −
2U
3c2 c′00

)
and C(2)

0 terms are

estimated to be 12% and 2%, respectively and the atomic units are converted to SI units using 1 a.u.

≈ h ·
(
6.57968 × 1015 Hz

)
, where h is Planck’s constant.

The frequency difference (in Hz) between the shifts of the mJ = 5/2 and mJ = 1/2 states for a pair

of 40Ca+ used in our experiment is given by

2 ×
1
h

(
EmJ=5/2 − EmJ=1/2

)
= −1.484 × 1015 Hz

(
(5/2)2 − (1/2)2

)
·C(2)

0 (16)

= −8.9(2) × 1015 Hz ·C(2)
0 . (17)

Transformation of the c′µν tensor from the laboratory frame to the Sun’s rest frame.

Because of the Earth’s motion, c′µν in the local laboratory frame varies according to the time-

dependent Lorentz transformation given by

c′µν = c′MNΛM
µ ΛN

ν , (18)

where Λ is the Lorentz transformation matrix and c′MN is c′µν written in the Sun-centred, celestial-

equatorial frame (SCCEF). The matrix Λ consists of a rotation and a velocity boost of the experiment

with respect to the Sun. In the laboratory frame, we define the x̂ axis to point to the East, ŷ axis to
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point to the North and ẑ axis to point upward. The rotation matrix that transforms from the SCCEF to

the local laboratory frame is given by

R =


− sin(ω⊕T ) cos(ω⊕T ) 0

− cos χ cos(ω⊕T ) − cos χ sin(ω⊕T ) sin χ

sin χ cos(ω⊕T ) sinχ cos(ω⊕T ) cos χ

 , (19)

where the angle χ ∼ 52.1° is the colatitude of the experiment (Berkeley, CA), T is time since vernal

equinox of 2014 and ω⊕ = 2π/23.93 h is the sidereal angular frequency of the Earth’s rotation. The

boost of the experiment in the SCCEF is given by

~β =


−β⊕ sin(η) cos(ΩT )

β⊕ cos(η) cos(ΩT ) − βL sin(χ) cos(ω⊕T )

−β⊕ sin(ΩT ) + βL sin(χ) sin(ω⊕T )

 , (20)

where β⊕ ∼ 10−4 is the boost from the Earth’s orbital velocity and βL ∼ 1.5 × 10−6 is the boost from

the Earth’s rotation, Ω is the yearly sidereal angular frequency and η ∼ 23.4° is the angle between the

ecliptic plane and the Earth’s equatorial plane.

The parameter relevant to our experiment is C(2)
0 . With the Lorentz transformation applied to c′µν in

the SCCEF, we can write the value of C(2)
0 in the local laboratory frame in terms of c′µν in the SCCEF

to be

C(2)
0 = A +

∑
j

(
C j cos(ω jT ) + S j sin(ω jT )

)
, (21)

where C j, S j and ωJ are amplitudes and angular frequency given in Extended Data Table 2, and A

is a constant offset. For our 23-hour measurement, the leading order of the time-dependent Lorentz-

violation signal is given by

C(2)
0 = −3 sin(2χ)c′XZ cos(ω⊕T ) − 3 sin(2χ)c′YZ sin(ω⊕T )−

−
3
2

(c′XX − c′YY) sin2(χ) cos(2ω⊕T ) − 3c′XY sin2(χ) sin(2ω⊕T ). (22)

We fit our binned 23-hour measurement data to this model and extract Lorentz-violation parameters,

where we report in Table 1 uncorrelated combinations of parameters by diagonalising the covariance

matrix from the fit. We scale the one-σ uncertainties from the fit with
√
χ2

reduced = 1.3 to conserva-

tively account for other remaining systematics.

With a year-long measurement, we expect to reach the sensitivity in the ions oscillation frequency

of 1 mHz. This level of sensitivity allows us to bound c′T X, c′TY and c′TZ at the 10−16 level, which will

improve the current limits9,40 for these parameters for at least an order of magnitude.
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30 Kostelecký, V. A., & Mewes, M. Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005

(2002).
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Extended Data Figure 1: Cancellation of the contributions from the magnetic field gradient. The

frequency measurements of the state
∣∣∣ΨL

〉
and

∣∣∣ΨR
〉

for a Ramsey duration of 100 ms are shown in

the top green ( fL) and bottom blue ( fR) data sets, respectively. We offset both data sets for

visualisation purpose. The contribution from the magnetic field gradient is subtracted out in the

average frequency f̄ = ( fL + fR)/2, which is shown as red data points.
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Extended Data Table 1: Lowest-order DF, DF+RPA, CI+single-double excitations (CI-SD), and

all-order results for the 〈3d 2DJ |p2|3d 2DJ〉 and 〈3d 2DJ ||T
(2)
0 ||3d 2DJ〉 matrix elements in Ca+ in

atomic units. The virial theorem values are listed in the column “VT”. The values in the DF(FC) and

DF columns are lowest-order DF values calculated with and without the frozen core approximation.

Matrix element DF(FC) DF RPA CI+SD All-order VT Final

〈3d 2D3/2|p2|3d 2D3/2〉 3.05 0.67 0.66 0.73 0.83 0.748 0.75(9)

〈3d 2D5/2|p2|3d 2D5/2〉 3.04 0.66 0.66 0.73 0.83 0.748 0.75(9)

〈3d 2D3/2||T (2)||3d 2D3/2〉 5.45 6.22 5.72 6.89 7.09 7.09(12)

〈3d 2D5/2||T (2)||3d 2D5/2〉 7.12 8.11 7.47 8.98 9.25 9.25(15)
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Extended Data Table 2: Amplitudes of various frequency components for C(2)
0 expressed in

terms of c′µν in the SCCEF. The frequencies ω⊕ and Ω are the daily and yearly sidereal angular

frequency, respectively. The angle χ ∼ 52.1° is the colatitude of the experiment (Berkeley, CA). The

angle η ∼ 23.4° is the angle between the ecliptic plane and the Earth’s equatorial plane. β⊕ ∼ 10−4 is

the boost from the Earth’s orbital velocity and βL ∼ 1.5 × 10−6 is the boost from the Earth’s rotation.

For our 23-hour-measurement, contributions from these two boosts are negligible.

ω j C j S j

ω⊕ −3 sin(2χ)c′XZ + 2c′TYβL −3 sin(2χ)c′YZ − 2c′T XβL

2ω⊕ −3
2 (c′XX − c′YY ) sin2(χ) −3c′XY sin2(χ)

Ω −1
2β⊕(3 cos(2χ) + 1)(c′TY cos(η) − 2c′TZ sin(η)) 1

2β⊕c′T X(3 cos(2χ) + 1)

2Ω 0 0

Ω − ω⊕
3
2β⊕c′T X sin(η) sin(2χ) −3

2β⊕ sin(2χ)
(
c′TY sin (η) + c′TZ(1 + cos (η))

)
Ω + ω⊕

3
2β⊕c′T X sin(η) sin(2χ) − 3

2β⊕ sin(2χ)
(
c′TZ(1 − cos(η)) − c′TY sin(η)

)
2Ω − ω⊕ 0 0

2Ω + ω⊕ 0 0

Ω − 2ω⊕ −3β⊕c′TY cos2
(
η
2

)
sin2(χ) −3β⊕c′T X cos2

(
η
2

)
sin2(χ)

Ω + 2ω⊕ 3β⊕c′TY sin2
(
η
2

)
sin2(χ) −3β⊕c′T X sin2

(
η
2

)
sin2(χ)

2Ω − 2ω⊕ 0 0

2Ω + 2ω⊕ 0 0


